Success in the SOA S90.08B exam is impossible without proper S90.08B exam preparation. I would recommend you select TorrentValid for your S90.08B certification test preparation. TorrentValid offers updated SOA S90.08B PDF Questions and practice tests. This S90.08B practice test material is a great help to you to prepare better for the final SOA S90.08B exam. TorrentValid lates S90.08B exam dumps are one of the most effective SOA S90.08B Exam Preparation methods. These valid SOA S90.08B exam dumps help you achieve better S90.08B exam results. World's highly qualified professionals provide their best knowledge to TorrentValid and create this SOA S90.08B practice test material. Candidates can save time because S90.08B valid dumps help them to prepare better for the SOA S90.08B test in a short time.

Nowadays the competition in the job market is fiercer than any time in the past. If you want to find a good job,you must own good competences and skillful major knowledge. So owning the SOA certification is necessary for you because we will provide the best study materials to you. Our SOA exam torrent is of high quality and efficient, and it can help you pass the test successfully. Our company is responsible for our study materials. Every product TorrentValid have sold to customer will enjoy considerate after-sales service. If you have problems about our S90.08B Study Materials such as installation, operation and so on, we will quickly reply to you after our online workers have received your emails. We are not afraid of troubles. We warmly welcome to your questions and suggestions. We sincerely hope we can help you solve your problem.

>> S90.08B Valid Exam Dumps <<

Updated S90.08B - SOA Design & Architecture Lab with Services & Microservices Valid Exam Dumps

The customers can prepare from the actual S90.08B and can clear SOA Design & Architecture Lab with Services & Microservices exam with ease and if they failed to do it despite all of their efforts they can get a full refund of their money according to terms and conditions. The S90.08B exam solutions is packed with a lot of premium features and it is getting updated on the daily basis according to the syllabus. SOA S90.08B updates real questions so the students can easily prepare for it and clear SOA S90.08B exam.

SOA Design & Architecture Lab with Services & Microservices Sample Questions (Q15-Q20):

NEW QUESTION # 15
Refer to Exhibit.

Service A is an entity service that provides a Get capability which returns a data value that is frequently changed.
Service Consumer A invokes Service A in order to request this data value (1). For Service A to carry out this request, it must invoke Service B (2), a utility service that interacts (3, 4) with the database in which the data value is stored. Regardless of whether the data value changed, Service B returns the latest value to Service A (5), and Service A returns the latest value to Service Consumer A (6).
The data value is changed when the legacy client program updates the database (7). When this change will occur is not predictable. Note also that Service A and Service B are not always available at the same time.
Any time the data value changes, Service Consumer A needs to receive It as soon as possible. Therefore, Service Consumer A initiates the message exchange shown In the figure several times a day. When it receives the same data value as before, the response from Service A Is ignored. When Service A provides an updated data value, Service Consumer A can process it to carry out its task.
The current service composition architecture is using up too many resources due to the repeated invocation of Service A by Service Consumer A and the resulting message exchanges that occur with each invocation.
What steps can be taken to solve this problem?

  • A. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service Consumer A and a database monitoring agent introduced through the application of the Service Agent pattern. The database monitoring agent monitors updates made by the legacy client to the database. This way, every time the data value is updated, an event is triggered and the database monitoring agent, acting as the publisher, can notify Service Consumer A, which acts as the subscriber.
    The Asynchronous Queuing pattern can be applied between Service Consumer A and the database monitoring agent so that the event notification message sent out by the database monitoring agent will be received by Service Consumer A, even when Service Consumer A is unavailable.
  • B. The Asynchronous Queuing pattern can be applied so that messaging queues are established between Service A and Service B and between Service Consumer A and Service A. This way, messages are never lost due to the unavailability of Service A or Service B.
  • C. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service A and Service B. This way, every time the data value is updated, an event is triggered and Service B, acting as the publisher, can notify Service A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service A and Service B so that the event notification message sent out by Service B will be received by Service A, even when Service A is unavailable.
  • D. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service Consumer A and Service A. This way, every time the data value is updated, an event is triggered and Service A, acting as the publisher, can notify Service Consumer A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service Consumer A and Service A so that the event notification message sent out by Service A will be received by Service Consumer A, even when Service Consumer A is unavailable.

Answer: C

Explanation:
This solution is the most appropriate one among the options presented. By using the Event-Driven Messaging pattern, Service A can be notified of changes to the data value without having to be invoked repeatedly by Service Consumer A, which reduces the resources required for message exchange. Asynchronous Queuing ensures that the event notification message is not lost due to the unavailability of Service A or Service B. This approach improves the efficiency of the service composition architecture.


NEW QUESTION # 16

Service Consumer A sends a message to Service A. There are currently three duplicate implementations of Service A (Implementation 1, Implementation 2 and Implementation 3). The message sent by Service Consumer A is intercepted by Service Agent A (1), which determines at runtime which implementation of Service A to forward the message to. All three implementations of Service A reside on the same physical server.
You are told that despite the fact that duplicate implementations of Service A exist, performance is still poor at times. You are also informed that a new service capability will soon need to be added to Service A to introduce functionality that will require access to a shared database being used by many other clients and applications in the IT enterprise. This is expected to add further performance demands on Service A.
How can this service architecture be changed to improve performance in preparation for the addition of the new service capability?

  • A. The Service Loose Coupling principle can be applied together with the Standardized Service Contract principle to ensure that Service Consumer A is not indirectly coupled to the shared database after the new service capability is added to the service contract. The Legacy Wrapper pattern can be applied to establish a new utility service that will provide standardized data access service capabilities for the shared database.
  • B. The Service Autonomy principle can be applied to further isolate the individual implementations of Service A by separating them onto different physical servers. When the new service capability is added, the State Repository pattern can be applied to give each implementation of Service A its own copy of the data it requires from the shared database.
  • C. The Service Autonomy principle can be applied to further isolate the individual implementations of Service A by separating them onto different physical servers. When the new service capability is added, the Service Data Replication pattern can be applied to give each implementation of Service A its own copy of the data it requires from the shared database.
  • D. The Standardized Service Contract principle can be applied to ensure that the new service capability extends the existing service contract in a manner that is compliant with current design standards. The Redundant Implementation pattern can be applied to establish separate implementations of Service A that include duplicate databases with copies of the data that Service A requires from the shared database.

Answer: C

Explanation:
Explanation
By separating the individual implementations of Service A onto different physical servers, they can be isolated from each other and from other clients and applications in the IT enterprise, which can help improve performance. Additionally, using the Service Data Replication pattern to give each implementation of Service A its own copy of the data it requires from the shared database can help reduce the load on the shared database and improve performance. This can be especially important when a new service capability is added that requires access to the shared database, as it can help ensure that the performance of Service A is not impacted by the additional demands placed on the shared database.


NEW QUESTION # 17

Service Consumer A and Service A reside in Service Inventory A. Service B and Service C reside in Service Inventory B. Service D is a public service that can be openly accessed via the World Wide Web. The service is also available for purchase so that it can be deployed independently within IT enterprises. Due to the rigorous application of the Service Abstraction principle within Service Inventory B, the only information that is made available about Service B and Service C are the published service contracts. For Service D, the service contract plus a service level agreement (SLA) are made available. The SLA indicates that Service D has a planned outage every night from 11:00pm to midnight.
You are an architect with a project team that is building services for Service Inventory A. You are told that the owners of Service Inventory A and Service Inventory B are not generally cooperative or communicative.
Cross-inventory service composition is tolerated, but not directly supported. As a result, no SLAs for Service B and Service C are available and you have no knowledge about how available these services are. Based on the service contracts you can determine that the services in Service Inventory B use different data models and a different transport protocol than the services in Service Inventory A. Furthermore, recent testing results have shown that the performance of Service D is highly unpredictable due to the heavy amount of concurrent access it receives from service consumers from other organizations. You are also told that there is a concern over how long Service Consumer A will need to remain stateful while waiting for a response from Service A.
What steps can be taken to solve these problems?

  • A. The Asynchronous Queuing pattern can be applied to position a message queue between Service A and Service B, between Service A and Service C, and between Service A and Service D. Additionally, a separate messaging queue is positioned between Service A and Service Consumer A. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B, between Service A and Service C, and between Service A and Service D. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house. The Legacy Wrapper pattern can be further applied to wrap Service D with a standardized service contract that is in compliance with the design standards used in Service Inventory B.
  • B. The Event-Driven Messaging pattern can be applied to establish a subscriber-publisher relationship between Service Consumer A and Service A. This gives Service A the flexibility to provide its response to Service Consumer A whenever it is able to collect the three data values without having to require that Service Consumer A remain stateful. The Asynchronous Queuing pattern can be applied to position a central messaging queue between Service A and Service B and between Service A and Service C. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house and made part of Service Inventory A.
  • C. The Containerization pattern can be applied to establish an environment for Service A to perform its processing autonomously. This gives Service A the flexibility to provide Service Consumer A with response messages consistently. The Asynchronous Queuing pattern can be applied so that a central messaging queue is positioned between Service A and Service B, between Service A and Service C, and between Service A and Service D. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C.
  • D. The Asynchronous Queuing pattern can be applied to position a central messaging queue between Service A and Service B and between Service A and Service C and so that a separate messaging queue is positioned between Service A and Service Consumer A. The Data Model Transformation and Protocol Bridging patterns can be applied to enable communication between Service A and Service B and between Service A and Service C. The Redundant Implementation pattern can be applied so that a copy of Service D is brought in-house. The Legacy Wrapper pattern can be further applied to wrap Service D with a standardized service contract that is in compliance with the design standards used in Service Inventory A.

Answer: A

Explanation:
Explanation
The Asynchronous Queuing pattern is applied to position a messaging queue between Service A, Service B, Service C, Service D, and Service Consumer A. This ensures that messages can be passed between these services without having to be in a stateful mode.
The Data Model Transformation and Protocol Bridging patterns are applied to enable communication between Service A and Service B, Service A and Service C, and Service A and Service D, despite their different data models and transport protocols.
The Redundant Implementation pattern is applied to bring a copy of Service D in-house to ensure that it can be accessed locally and reduce the unpredictability of its performance.
The Legacy Wrapper pattern is applied to wrap Service D with a standardized service contract that complies with the design standards used in Service Inventory B. This is useful for service consumers who want to use Service D but do not want to change their existing applications or service contracts.
Overall, this approach provides a comprehensive solution that addresses the issues with Service A, Service B, Service C, and Service D, while maintaining compliance with the Service Abstraction principle.


NEW QUESTION # 18
Refer to Exhibit.

Service A is a SOAP-based Web service with a functional context dedicated to invoice-related processing. Service B is a REST-based utility service that provides generic data access to a database.
In this service composition architecture, Service Consumer A sends a SOAP message containing an invoice XML document to Service A (1). Service A then sends the invoice XML document to Service B (2), which then writes the invoice document to a database (3).
The data model used by Service Consumer A to represent the invoice document is based on XML Schema A.
The service contract of Service A is designed to accept invoice documents based on XML Schema B. The service contract for Service B is designed to accept invoice documents based on XML Schema A. The database to which Service B needs to write the invoice record only accepts entire business documents in a proprietary Comma Separated Value (CSV) format.
Due to the incompatibility of the XML schemas used by the services, the sending of the invoice document from Service Consumer A through to Service B cannot be accomplished using the services as they currently exist. Assuming that the Contract Centralization pattern is being applied and that the Logic Centralization pattern is not being applied, what steps can be taken to enable the sending of the invoice document from Service Consumer A to the database without adding logic that will increase the runtime performance requirements?

  • A. The service composition can be redesigned so that Service Consumer A sends the invoice document directly to Service B.
    Because Service Consumer A and Service B use XML Schema A, the need for transformation logic is avoided. This naturally applies the Logic Centralization pattern because Service Consumer A is not required to send the invoice document In a format that is compliant with the database used by Service B.
  • B. Service Consumer A can be redesigned to use XML Schema B so that the SOAP message it sends is compliant with the service contract of Service A.
    The Data Model Transformation pattern can then be applied to transform the SOAP message sent by Service A so that it conforms to the XML Schema A used by Service B. The Standardized Service Contract principle must then be applied to Service B and Service Consumer A so that the invoice XML document is optimized to avoid unnecessary validation.
  • C. The service composition can be redesigned so that Service Consumer A sends the invoice document directly to Service B after the specialized invoice processing logic from Service A is copied to Service B.
    Because Service Consumer A and Service B use XML Schema A, the need for transformation logic is avoided. This naturally applies the Service Loose Coupling principle because Service Consumer A is not required to send the invoice document In a format that is compliant with the database used by Service B.
  • D. Service Consumer A can be redesigned to write the invoice document directly to the database. This reduces performance requirements by avoiding the involvement of Service A and Service B.
    It further supports the application of the Service Loose Coupling principle by ensuring that Service Consumer A contains data access logic that couples it directly to the database.

Answer: B

Explanation:
The recommended solution is to use the Data Model Transformation pattern to transform the invoice XML document from Schema B to Schema A before passing it to Service B.
This solution maintains the separation of concerns and allows each service to work with its own specific XML schema. Additionally, the Standardized Service Contract principle should be applied to Service B and Service Consumer A to ensure that unnecessary validation is avoided, thus optimizing the invoice XML document. This solution avoids adding logic that will increase the runtime performance requirements.


NEW QUESTION # 19

Services A, B, and C are non-agnostic task services. Service A and Service B use the same shared state database to defer their state data at runtime.
An assessment of the three services reveals that each contains some agnostic logic that cannot be made available for reuse because it is bundled together with non-agnostic logic.
The assessment also determines that because Service A, Service B and the shared state database are each located in physically separate environments, the remote communication required for Service A and Service B to interact with the shared state database is causing an unreasonable decrease in runtime performance.
How can the application of the Orchestration pattern improve this architecture?

  • A. The application of the Orchestration pattern will result in an environment whereby the non-agnostic logic can be cleanly separated from the agnostic logic that exists in Services A, B, and C, resulting in theneed to design new agnostic services with reuse potential assured through the application of the Service Reusability principle. The State Repository pattern, which is supported by and local to the orchestration environment, provides a central state database that can be shared by Services A and B. The local state database avoids problems with remote communication.
  • B. The application of the Orchestration pattern will result in an environment whereby the Official Endpoint, State Repository, and Service Data Replication patterns are automatically applied, allowing the shared state database to be replicated via official service endpoints for Services A and B so that each task service can have its own dedicated state database.
  • C. The Orchestration pattern is not applicable to this architecture because it does not support the hosting of the required state repository.
  • D. The application of the Orchestration pattern will result in an environment whereby the Compensating Service Transaction is automatically applied, resulting In the opportunity to create sophisticated exception logic that can be used to compensate for the performance problems caused by Services A and B having to remotely access the state database. The API Gateway and Service Broker patterns are also automatically applied, providing common transformation functions in a centralized processing layer to help overcome any disparity in the service contracts that will need to be created for the new agnostic services.

Answer: A

Explanation:
Explanation
The application of the Orchestration pattern can improve this architecture by cleanly separating the non-agnostic logic from the agnostic logic, allowing the design of new agnostic services with reuse potential.
The State Repository pattern, which is supported by and local to the orchestration environment, provides a central state database that can be shared by Services A and B. The local state database avoids problems with remote communication. Additionally, the Orchestration pattern provides a central controller that can coordinate the interactions between Services A, B, and C, reducing the need for remote communication between services and improving runtime performance.


NEW QUESTION # 20
......

To pass the SOA S90.08B exam is a dream who are engaged in IT industry. If you want to change the dream into reality, you only need to choose the professional training. TorrentValid is a professional website that providing IT certification training materials. Select TorrentValid, it will ensure your success. No matter how high your pursuit of the goal, TorrentValid will make your dreams become a reality.

Brain Dump S90.08B Free: https://www.torrentvalid.com/S90.08B-valid-braindumps-torrent.html

SOA S90.08B Valid Exam Dumps Or you can wait the updating or free change to other dumps if you have other test, SOA S90.08B Valid Exam Dumps First of all, our researchers have made lots of efforts to develop the scoring system, SOA S90.08B Valid Exam Dumps Is your lack of a degree holding you back from career development, SOA S90.08B Valid Exam Dumps All your endeavors can turn to dust if you prepare as per the old content.

We first create a vertex buffer holding three members of the vertex structure Brain Dump S90.08B Free type we've already declared, Due to our location and the interests of our clients, we tend to be a bit American centric in our work.

How TorrentValid will Help You in Passing the SOA S90.08B Certification Exam?

Or you can wait the updating or free change to other dumps (https://www.torrentvalid.com/S90.08B-valid-braindumps-torrent.html) if you have other test, First of all, our researchers have made lots of efforts to develop the scoring system.

Is your lack of a degree holding you back from career development, All your endeavors can turn to dust if you prepare as per the old content, Our SOA Design & Architecture Lab with Services & Microservices exam material is good to S90.08B pass exam in a week.